This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two closed sets have a closed intersection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreincl | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intprg | |- ( ( A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } = ( A i^i B ) ) |
| 3 | simp1 | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> C e. ( Moore ` X ) ) |
|
| 4 | prssi | |- ( ( A e. C /\ B e. C ) -> { A , B } C_ C ) |
|
| 5 | 4 | 3adant1 | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } C_ C ) |
| 6 | prnzg | |- ( A e. C -> { A , B } =/= (/) ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> { A , B } =/= (/) ) |
| 8 | mreintcl | |- ( ( C e. ( Moore ` X ) /\ { A , B } C_ C /\ { A , B } =/= (/) ) -> |^| { A , B } e. C ) |
|
| 9 | 3 5 7 8 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> |^| { A , B } e. C ) |
| 10 | 2 9 | eqeltrrd | |- ( ( C e. ( Moore ` X ) /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |