This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f13idfv.a | |- A = ( 0 ... 2 ) |
|
| Assertion | f13idfv | |- ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f13idfv.a | |- A = ( 0 ... 2 ) |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | 1z | |- 1 e. ZZ |
|
| 4 | 2z | |- 2 e. ZZ |
|
| 5 | 2 3 4 | 3pm3.2i | |- ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) |
| 6 | 0ne1 | |- 0 =/= 1 |
|
| 7 | 0ne2 | |- 0 =/= 2 |
|
| 8 | 1ne2 | |- 1 =/= 2 |
|
| 9 | 6 7 8 | 3pm3.2i | |- ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) |
| 10 | fz0tp | |- ( 0 ... 2 ) = { 0 , 1 , 2 } |
|
| 11 | 1 10 | eqtri | |- A = { 0 , 1 , 2 } |
| 12 | 11 | f13dfv | |- ( ( ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) ) |
| 13 | 5 9 12 | mp2an | |- ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) |