This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nssdmovg | |- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> ( A F B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 2 | ssel2 | |- ( ( dom F C_ ( R X. S ) /\ <. A , B >. e. dom F ) -> <. A , B >. e. ( R X. S ) ) |
|
| 3 | opelxp | |- ( <. A , B >. e. ( R X. S ) <-> ( A e. R /\ B e. S ) ) |
|
| 4 | 2 3 | sylib | |- ( ( dom F C_ ( R X. S ) /\ <. A , B >. e. dom F ) -> ( A e. R /\ B e. S ) ) |
| 5 | 4 | stoic1a | |- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> -. <. A , B >. e. dom F ) |
| 6 | ndmfv | |- ( -. <. A , B >. e. dom F -> ( F ` <. A , B >. ) = (/) ) |
|
| 7 | 5 6 | syl | |- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> ( F ` <. A , B >. ) = (/) ) |
| 8 | 1 7 | eqtrid | |- ( ( dom F C_ ( R X. S ) /\ -. ( A e. R /\ B e. S ) ) -> ( A F B ) = (/) ) |