This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpomatmul.a | |- A = ( N Mat R ) |
|
| mpomatmul.b | |- B = ( Base ` R ) |
||
| mpomatmul.m | |- .X. = ( .r ` A ) |
||
| mpomatmul.t | |- .x. = ( .r ` R ) |
||
| mpomatmul.r | |- ( ph -> R e. V ) |
||
| mpomatmul.n | |- ( ph -> N e. Fin ) |
||
| mpomatmul.x | |- X = ( i e. N , j e. N |-> C ) |
||
| mpomatmul.y | |- Y = ( i e. N , j e. N |-> E ) |
||
| mpomatmul.c | |- ( ( ph /\ i e. N /\ j e. N ) -> C e. B ) |
||
| mpomatmul.e | |- ( ( ph /\ i e. N /\ j e. N ) -> E e. B ) |
||
| mpomatmul.d | |- ( ( ph /\ ( k = i /\ m = j ) ) -> D = C ) |
||
| mpomatmul.f | |- ( ( ph /\ ( m = i /\ l = j ) ) -> F = E ) |
||
| mpomatmul.1 | |- ( ( ph /\ k e. N /\ m e. N ) -> D e. U ) |
||
| mpomatmul.2 | |- ( ( ph /\ m e. N /\ l e. N ) -> F e. W ) |
||
| Assertion | mpomatmul | |- ( ph -> ( X .X. Y ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomatmul.a | |- A = ( N Mat R ) |
|
| 2 | mpomatmul.b | |- B = ( Base ` R ) |
|
| 3 | mpomatmul.m | |- .X. = ( .r ` A ) |
|
| 4 | mpomatmul.t | |- .x. = ( .r ` R ) |
|
| 5 | mpomatmul.r | |- ( ph -> R e. V ) |
|
| 6 | mpomatmul.n | |- ( ph -> N e. Fin ) |
|
| 7 | mpomatmul.x | |- X = ( i e. N , j e. N |-> C ) |
|
| 8 | mpomatmul.y | |- Y = ( i e. N , j e. N |-> E ) |
|
| 9 | mpomatmul.c | |- ( ( ph /\ i e. N /\ j e. N ) -> C e. B ) |
|
| 10 | mpomatmul.e | |- ( ( ph /\ i e. N /\ j e. N ) -> E e. B ) |
|
| 11 | mpomatmul.d | |- ( ( ph /\ ( k = i /\ m = j ) ) -> D = C ) |
|
| 12 | mpomatmul.f | |- ( ( ph /\ ( m = i /\ l = j ) ) -> F = E ) |
|
| 13 | mpomatmul.1 | |- ( ( ph /\ k e. N /\ m e. N ) -> D e. U ) |
|
| 14 | mpomatmul.2 | |- ( ( ph /\ m e. N /\ l e. N ) -> F e. W ) |
|
| 15 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 16 | 1 15 | matmulr | |- ( ( N e. Fin /\ R e. V ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 17 | 16 3 | eqtr4di | |- ( ( N e. Fin /\ R e. V ) -> ( R maMul <. N , N , N >. ) = .X. ) |
| 18 | 17 | oveqd | |- ( ( N e. Fin /\ R e. V ) -> ( X ( R maMul <. N , N , N >. ) Y ) = ( X .X. Y ) ) |
| 19 | 18 | eqcomd | |- ( ( N e. Fin /\ R e. V ) -> ( X .X. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) |
| 20 | 6 5 19 | syl2anc | |- ( ph -> ( X .X. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) |
| 21 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 22 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 23 | 9 2 | eleqtrdi | |- ( ( ph /\ i e. N /\ j e. N ) -> C e. ( Base ` R ) ) |
| 24 | 1 21 22 6 5 23 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> C ) e. ( Base ` A ) ) |
| 25 | 7 24 | eqeltrid | |- ( ph -> X e. ( Base ` A ) ) |
| 26 | 1 21 | matbas2 | |- ( ( N e. Fin /\ R e. V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 27 | 6 5 26 | syl2anc | |- ( ph -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) |
| 28 | 25 27 | eleqtrrd | |- ( ph -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 29 | 10 2 | eleqtrdi | |- ( ( ph /\ i e. N /\ j e. N ) -> E e. ( Base ` R ) ) |
| 30 | 1 21 22 6 5 29 | matbas2d | |- ( ph -> ( i e. N , j e. N |-> E ) e. ( Base ` A ) ) |
| 31 | 8 30 | eqeltrid | |- ( ph -> Y e. ( Base ` A ) ) |
| 32 | 31 27 | eleqtrrd | |- ( ph -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 33 | 15 21 4 5 6 6 6 28 32 | mamuval | |- ( ph -> ( X ( R maMul <. N , N , N >. ) Y ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) ) ) |
| 34 | 7 | a1i | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> X = ( i e. N , j e. N |-> C ) ) |
| 35 | equcom | |- ( i = k <-> k = i ) |
|
| 36 | equcom | |- ( j = m <-> m = j ) |
|
| 37 | 35 36 | anbi12i | |- ( ( i = k /\ j = m ) <-> ( k = i /\ m = j ) ) |
| 38 | 37 11 | sylan2b | |- ( ( ph /\ ( i = k /\ j = m ) ) -> D = C ) |
| 39 | 38 | eqcomd | |- ( ( ph /\ ( i = k /\ j = m ) ) -> C = D ) |
| 40 | 39 | ex | |- ( ph -> ( ( i = k /\ j = m ) -> C = D ) ) |
| 41 | 40 | 3ad2ant1 | |- ( ( ph /\ k e. N /\ l e. N ) -> ( ( i = k /\ j = m ) -> C = D ) ) |
| 42 | 41 | adantr | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( i = k /\ j = m ) -> C = D ) ) |
| 43 | 42 | imp | |- ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = k /\ j = m ) ) -> C = D ) |
| 44 | simpl2 | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> k e. N ) |
|
| 45 | simpr | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> m e. N ) |
|
| 46 | simpl1 | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ph ) |
|
| 47 | 46 44 45 13 | syl3anc | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> D e. U ) |
| 48 | 34 43 44 45 47 | ovmpod | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( k X m ) = D ) |
| 49 | 8 | a1i | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> Y = ( i e. N , j e. N |-> E ) ) |
| 50 | equcomi | |- ( i = m -> m = i ) |
|
| 51 | equcomi | |- ( j = l -> l = j ) |
|
| 52 | 50 51 | anim12i | |- ( ( i = m /\ j = l ) -> ( m = i /\ l = j ) ) |
| 53 | 52 12 | sylan2 | |- ( ( ph /\ ( i = m /\ j = l ) ) -> F = E ) |
| 54 | 53 | ex | |- ( ph -> ( ( i = m /\ j = l ) -> F = E ) ) |
| 55 | 54 | 3ad2ant1 | |- ( ( ph /\ k e. N /\ l e. N ) -> ( ( i = m /\ j = l ) -> F = E ) ) |
| 56 | 55 | adantr | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( i = m /\ j = l ) -> F = E ) ) |
| 57 | 56 | imp | |- ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = m /\ j = l ) ) -> F = E ) |
| 58 | 57 | eqcomd | |- ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = m /\ j = l ) ) -> E = F ) |
| 59 | simpl3 | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> l e. N ) |
|
| 60 | 46 45 59 14 | syl3anc | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> F e. W ) |
| 61 | 49 58 45 59 60 | ovmpod | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( m Y l ) = F ) |
| 62 | 48 61 | oveq12d | |- ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( k X m ) .x. ( m Y l ) ) = ( D .x. F ) ) |
| 63 | 62 | mpteq2dva | |- ( ( ph /\ k e. N /\ l e. N ) -> ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) = ( m e. N |-> ( D .x. F ) ) ) |
| 64 | 63 | oveq2d | |- ( ( ph /\ k e. N /\ l e. N ) -> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) = ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) |
| 65 | 64 | mpoeq3dva | |- ( ph -> ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) ) |
| 66 | 20 33 65 | 3eqtrd | |- ( ph -> ( X .X. Y ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) ) |