This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modvalp1 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) ) = ( A mod B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 3 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 4 | 3 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 5 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 6 | 5 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 7 | 4 6 | mulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) x. B ) e. CC ) |
| 8 | 2 7 6 | pnpcan2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
| 9 | 4 6 | adddirp1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) = ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) |
| 10 | 9 | oveq2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) ) = ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) ) |
| 11 | modvalr | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
|
| 12 | 8 10 11 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) ) = ( A mod B ) ) |