This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modvalp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 + 𝐵 ) − ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 3 | refldivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 5 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 7 | 4 6 | mulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ∈ ℂ ) |
| 8 | 2 7 6 | pnpcan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 + 𝐵 ) − ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + 𝐵 ) ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) |
| 9 | 4 6 | adddirp1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) · 𝐵 ) = ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + 𝐵 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 + 𝐵 ) − ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) · 𝐵 ) ) = ( ( 𝐴 + 𝐵 ) − ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) + 𝐵 ) ) ) |
| 11 | modvalr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) · 𝐵 ) ) ) | |
| 12 | 8 10 11 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 + 𝐵 ) − ( ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) + 1 ) · 𝐵 ) ) = ( 𝐴 mod 𝐵 ) ) |