This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the modulo operation (multiplication in reversed order). (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modvalr | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 2 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 3 | 2 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 4 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 5 | reflcl | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 6 | 5 | recnd | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) |
| 7 | 4 6 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 8 | 3 7 | mulcomd | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) |
| 9 | 8 | oveq2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
| 10 | 1 9 | eqtrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |