This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of a real number modulo a positive real number and another real number equals the difference of the two real numbers modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modsubmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) − 𝐵 ) mod 𝑀 ) = ( ( 𝐴 − 𝐵 ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) | |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) | |
| 6 | modabs2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) | |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
| 8 | eqidd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) | |
| 9 | 2 3 4 4 5 7 8 | modsub12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) − 𝐵 ) mod 𝑀 ) = ( ( 𝐴 − 𝐵 ) mod 𝑀 ) ) |