This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer plus a product is itself modulo a positive integer iff the product is divisible by the positive integer. (Contributed by AV, 8-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmulmodb | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( N || ( B x. C ) <-> ( ( A + ( B x. C ) ) mod N ) = ( A mod N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
|
| 2 | 1 | zcnd | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. CC ) |
| 3 | 2 | adantl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A e. CC ) |
| 4 | zmulcl | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
|
| 5 | 4 | zcnd | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. CC ) |
| 6 | 5 | 3adant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. CC ) |
| 7 | 6 | adantl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( B x. C ) e. CC ) |
| 8 | 3 7 | pncan2d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A + ( B x. C ) ) - A ) = ( B x. C ) ) |
| 9 | 8 | eqcomd | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( B x. C ) = ( ( A + ( B x. C ) ) - A ) ) |
| 10 | 9 | breq2d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( N || ( B x. C ) <-> N || ( ( A + ( B x. C ) ) - A ) ) ) |
| 11 | simpl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> N e. NN ) |
|
| 12 | 4 | 3adant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B x. C ) e. ZZ ) |
| 13 | 1 12 | zaddcld | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A + ( B x. C ) ) e. ZZ ) |
| 14 | 13 | adantl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A + ( B x. C ) ) e. ZZ ) |
| 15 | 1 | adantl | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A e. ZZ ) |
| 16 | moddvds | |- ( ( N e. NN /\ ( A + ( B x. C ) ) e. ZZ /\ A e. ZZ ) -> ( ( ( A + ( B x. C ) ) mod N ) = ( A mod N ) <-> N || ( ( A + ( B x. C ) ) - A ) ) ) |
|
| 17 | 11 14 15 16 | syl3anc | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A + ( B x. C ) ) mod N ) = ( A mod N ) <-> N || ( ( A + ( B x. C ) ) - A ) ) ) |
| 18 | 10 17 | bitr4d | |- ( ( N e. NN /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( N || ( B x. C ) <-> ( ( A + ( B x. C ) ) mod N ) = ( A mod N ) ) ) |