This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpval.1 | |- M = ( mulGrp ` R ) |
|
| mgpval.2 | |- .x. = ( .r ` R ) |
||
| Assertion | mgpval | |- M = ( R sSet <. ( +g ` ndx ) , .x. >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | |- M = ( mulGrp ` R ) |
|
| 2 | mgpval.2 | |- .x. = ( .r ` R ) |
|
| 3 | id | |- ( r = R -> r = R ) |
|
| 4 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 6 | 5 | opeq2d | |- ( r = R -> <. ( +g ` ndx ) , ( .r ` r ) >. = <. ( +g ` ndx ) , .x. >. ) |
| 7 | 3 6 | oveq12d | |- ( r = R -> ( r sSet <. ( +g ` ndx ) , ( .r ` r ) >. ) = ( R sSet <. ( +g ` ndx ) , .x. >. ) ) |
| 8 | df-mgp | |- mulGrp = ( r e. _V |-> ( r sSet <. ( +g ` ndx ) , ( .r ` r ) >. ) ) |
|
| 9 | ovex | |- ( R sSet <. ( +g ` ndx ) , .x. >. ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( R e. _V -> ( mulGrp ` R ) = ( R sSet <. ( +g ` ndx ) , .x. >. ) ) |
| 11 | fvprc | |- ( -. R e. _V -> ( mulGrp ` R ) = (/) ) |
|
| 12 | reldmsets | |- Rel dom sSet |
|
| 13 | 12 | ovprc1 | |- ( -. R e. _V -> ( R sSet <. ( +g ` ndx ) , .x. >. ) = (/) ) |
| 14 | 11 13 | eqtr4d | |- ( -. R e. _V -> ( mulGrp ` R ) = ( R sSet <. ( +g ` ndx ) , .x. >. ) ) |
| 15 | 10 14 | pm2.61i | |- ( mulGrp ` R ) = ( R sSet <. ( +g ` ndx ) , .x. >. ) |
| 16 | 1 15 | eqtri | |- M = ( R sSet <. ( +g ` ndx ) , .x. >. ) |