This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nelrdva.1 | |- ( ( ph /\ x e. A ) -> x =/= B ) |
|
| Assertion | nelrdva | |- ( ph -> -. B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelrdva.1 | |- ( ( ph /\ x e. A ) -> x =/= B ) |
|
| 2 | eqidd | |- ( ( ph /\ B e. A ) -> B = B ) |
|
| 3 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 4 | 3 | anbi2d | |- ( x = B -> ( ( ph /\ x e. A ) <-> ( ph /\ B e. A ) ) ) |
| 5 | neeq1 | |- ( x = B -> ( x =/= B <-> B =/= B ) ) |
|
| 6 | 4 5 | imbi12d | |- ( x = B -> ( ( ( ph /\ x e. A ) -> x =/= B ) <-> ( ( ph /\ B e. A ) -> B =/= B ) ) ) |
| 7 | 6 1 | vtoclg | |- ( B e. A -> ( ( ph /\ B e. A ) -> B =/= B ) ) |
| 8 | 7 | anabsi7 | |- ( ( ph /\ B e. A ) -> B =/= B ) |
| 9 | 8 | neneqd | |- ( ( ph /\ B e. A ) -> -. B = B ) |
| 10 | 2 9 | pm2.65da | |- ( ph -> -. B e. A ) |