This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| metequiv.4 | |- K = ( MetOpen ` D ) |
||
| Assertion | metequiv | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J = K <-> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| 2 | metequiv.4 | |- K = ( MetOpen ` D ) |
|
| 3 | 1 2 | metss | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 4 | 2 1 | metss | |- ( ( D e. ( *Met ` X ) /\ C e. ( *Met ` X ) ) -> ( K C_ J <-> A. x e. X A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) |
| 5 | 4 | ancoms | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( K C_ J <-> A. x e. X A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) |
| 6 | 3 5 | anbi12d | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( ( J C_ K /\ K C_ J ) <-> ( A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. x e. X A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) ) |
| 7 | eqss | |- ( J = K <-> ( J C_ K /\ K C_ J ) ) |
|
| 8 | r19.26 | |- ( A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) <-> ( A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. x e. X A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) |
|
| 9 | 6 7 8 | 3bitr4g | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J = K <-> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. a e. RR+ E. b e. RR+ ( x ( ball ` C ) b ) C_ ( x ( ball ` D ) a ) ) ) ) |