This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blssex | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blss | |- ( ( D e. ( *Met ` X ) /\ x e. ran ( ball ` D ) /\ P e. x ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ x ) |
|
| 2 | sstr | |- ( ( ( P ( ball ` D ) r ) C_ x /\ x C_ A ) -> ( P ( ball ` D ) r ) C_ A ) |
|
| 3 | 2 | expcom | |- ( x C_ A -> ( ( P ( ball ` D ) r ) C_ x -> ( P ( ball ` D ) r ) C_ A ) ) |
| 4 | 3 | reximdv | |- ( x C_ A -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ x -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 5 | 1 4 | syl5com | |- ( ( D e. ( *Met ` X ) /\ x e. ran ( ball ` D ) /\ P e. x ) -> ( x C_ A -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 6 | 5 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ x e. ran ( ball ` D ) ) /\ P e. x ) -> ( x C_ A -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 7 | 6 | expimpd | |- ( ( D e. ( *Met ` X ) /\ x e. ran ( ball ` D ) ) -> ( ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 8 | 7 | adantlr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ x e. ran ( ball ` D ) ) -> ( ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 9 | 8 | rexlimdva | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) -> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |
| 10 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> D e. ( *Met ` X ) ) |
|
| 11 | simplr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> P e. X ) |
|
| 12 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> r e. RR* ) |
| 14 | blelrn | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ r e. RR* ) -> ( P ( ball ` D ) r ) e. ran ( ball ` D ) ) |
|
| 15 | 10 11 13 14 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> ( P ( ball ` D ) r ) e. ran ( ball ` D ) ) |
| 16 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> r e. RR+ ) |
|
| 17 | blcntr | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ r e. RR+ ) -> P e. ( P ( ball ` D ) r ) ) |
|
| 18 | 10 11 16 17 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> P e. ( P ( ball ` D ) r ) ) |
| 19 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> ( P ( ball ` D ) r ) C_ A ) |
|
| 20 | eleq2 | |- ( x = ( P ( ball ` D ) r ) -> ( P e. x <-> P e. ( P ( ball ` D ) r ) ) ) |
|
| 21 | sseq1 | |- ( x = ( P ( ball ` D ) r ) -> ( x C_ A <-> ( P ( ball ` D ) r ) C_ A ) ) |
|
| 22 | 20 21 | anbi12d | |- ( x = ( P ( ball ` D ) r ) -> ( ( P e. x /\ x C_ A ) <-> ( P e. ( P ( ball ` D ) r ) /\ ( P ( ball ` D ) r ) C_ A ) ) ) |
| 23 | 22 | rspcev | |- ( ( ( P ( ball ` D ) r ) e. ran ( ball ` D ) /\ ( P e. ( P ( ball ` D ) r ) /\ ( P ( ball ` D ) r ) C_ A ) ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) |
| 24 | 15 18 19 23 | syl12anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( r e. RR+ /\ ( P ( ball ` D ) r ) C_ A ) ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) |
| 25 | 24 | rexlimdvaa | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( E. r e. RR+ ( P ( ball ` D ) r ) C_ A -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) ) |
| 26 | 9 25 | impbid | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) <-> E. r e. RR+ ( P ( ball ` D ) r ) C_ A ) ) |