This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| metequiv.4 | |- K = ( MetOpen ` D ) |
||
| Assertion | metequiv2 | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> J = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metequiv.3 | |- J = ( MetOpen ` C ) |
|
| 2 | metequiv.4 | |- K = ( MetOpen ` D ) |
|
| 3 | simprrr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) |
|
| 4 | simplll | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> C e. ( *Met ` X ) ) |
|
| 5 | simplr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> x e. X ) |
|
| 6 | simprlr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR+ ) |
|
| 7 | 6 | rpxrd | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR* ) |
| 8 | simprll | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR+ ) |
|
| 9 | 8 | rpxrd | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR* ) |
| 10 | simprrl | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s <_ r ) |
|
| 11 | ssbl | |- ( ( ( C e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) |
|
| 12 | 4 5 7 9 10 11 | syl221anc | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) |
| 13 | 3 12 | eqsstrrd | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 14 | simpllr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> D e. ( *Met ` X ) ) |
|
| 15 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) |
|
| 16 | 14 5 7 9 10 15 | syl221anc | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) |
| 17 | 3 16 | eqsstrd | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) |
| 18 | 13 17 | jca | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
| 19 | 18 | expr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( r e. RR+ /\ s e. RR+ ) ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 20 | 19 | anassrs | |- ( ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) /\ s e. RR+ ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 21 | 20 | reximdva | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 22 | r19.40 | |- ( E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
|
| 23 | 21 22 | syl6 | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 24 | 23 | ralimdva | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 25 | r19.26 | |- ( A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) <-> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) |
|
| 26 | 24 25 | imbitrdi | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 27 | 26 | ralimdva | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 28 | 1 2 | metequiv | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J = K <-> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) |
| 29 | 27 28 | sylibrd | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> J = K ) ) |