This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| xmetdcn.2 | |- K = ( ordTop ` <_ ) |
||
| Assertion | xmetdcn | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | xmetdcn.2 | |- K = ( ordTop ` <_ ) |
|
| 3 | letopon | |- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
|
| 4 | 2 3 | eqeltri | |- K e. ( TopOn ` RR* ) |
| 5 | eqid | |- ( dist ` RR*s ) = ( dist ` RR*s ) |
|
| 6 | eqid | |- ( MetOpen ` ( dist ` RR*s ) ) = ( MetOpen ` ( dist ` RR*s ) ) |
|
| 7 | 5 6 | xrsmopn | |- ( ordTop ` <_ ) C_ ( MetOpen ` ( dist ` RR*s ) ) |
| 8 | 2 7 | eqsstri | |- K C_ ( MetOpen ` ( dist ` RR*s ) ) |
| 9 | 5 | xrsxmet | |- ( dist ` RR*s ) e. ( *Met ` RR* ) |
| 10 | 6 | mopnuni | |- ( ( dist ` RR*s ) e. ( *Met ` RR* ) -> RR* = U. ( MetOpen ` ( dist ` RR*s ) ) ) |
| 11 | 9 10 | ax-mp | |- RR* = U. ( MetOpen ` ( dist ` RR*s ) ) |
| 12 | 11 | cnss2 | |- ( ( K e. ( TopOn ` RR* ) /\ K C_ ( MetOpen ` ( dist ` RR*s ) ) ) -> ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) C_ ( ( J tX J ) Cn K ) ) |
| 13 | 4 8 12 | mp2an | |- ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) C_ ( ( J tX J ) Cn K ) |
| 14 | 1 5 6 | xmetdcn2 | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn ( MetOpen ` ( dist ` RR*s ) ) ) ) |
| 15 | 13 14 | sselid | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |