This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset is closed iff it contains its own closure. (Contributed by NM, 31-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | iscld4 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | iscld3 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) |
| 3 | eqss | |- ( ( ( cls ` J ) ` S ) = S <-> ( ( ( cls ` J ) ` S ) C_ S /\ S C_ ( ( cls ` J ) ` S ) ) ) |
|
| 4 | 1 | sscls | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 5 | 4 | biantrud | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ S <-> ( ( ( cls ` J ) ` S ) C_ S /\ S C_ ( ( cls ` J ) ` S ) ) ) ) |
| 6 | 3 5 | bitr4id | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 7 | 2 6 | bitrd | |- ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |