This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. Compared with ovig , the condition ( x e. R /\ y e. S ) is removed. (Contributed by FL, 24-Mar-2007) (Revised by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovigg.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| ovigg.4 | |- E* z ph |
||
| ovigg.5 | |- F = { <. <. x , y >. , z >. | ph } |
||
| Assertion | ovigg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> ( A F B ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovigg.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| 2 | ovigg.4 | |- E* z ph |
|
| 3 | ovigg.5 | |- F = { <. <. x , y >. , z >. | ph } |
|
| 4 | 1 | eloprabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| 5 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
| 6 | 3 | fveq1i | |- ( F ` <. A , B >. ) = ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) |
| 7 | 5 6 | eqtri | |- ( A F B ) = ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) |
| 8 | 2 | funoprab | |- Fun { <. <. x , y >. , z >. | ph } |
| 9 | funopfv | |- ( Fun { <. <. x , y >. , z >. | ph } -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) = C ) ) |
|
| 10 | 8 9 | ax-mp | |- ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( { <. <. x , y >. , z >. | ph } ` <. A , B >. ) = C ) |
| 11 | 7 10 | eqtrid | |- ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } -> ( A F B ) = C ) |
| 12 | 4 11 | biimtrrdi | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( ps -> ( A F B ) = C ) ) |