This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetfval.u | |- G = ( glb ` K ) |
|
| meetfval.m | |- ./\ = ( meet ` K ) |
||
| Assertion | meetdm | |- ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom G } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | |- G = ( glb ` K ) |
|
| 2 | meetfval.m | |- ./\ = ( meet ` K ) |
|
| 3 | 1 2 | meetfval2 | |- ( K e. V -> ./\ = { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
| 4 | 3 | dmeqd | |- ( K e. V -> dom ./\ = dom { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } ) |
| 5 | dmoprab | |- dom { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. x , y >. | E. z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } |
|
| 6 | fvex | |- ( G ` { x , y } ) e. _V |
|
| 7 | 6 | isseti | |- E. z z = ( G ` { x , y } ) |
| 8 | 19.42v | |- ( E. z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) <-> ( { x , y } e. dom G /\ E. z z = ( G ` { x , y } ) ) ) |
|
| 9 | 7 8 | mpbiran2 | |- ( E. z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) <-> { x , y } e. dom G ) |
| 10 | 9 | opabbii | |- { <. x , y >. | E. z ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. x , y >. | { x , y } e. dom G } |
| 11 | 5 10 | eqtri | |- dom { <. <. x , y >. , z >. | ( { x , y } e. dom G /\ z = ( G ` { x , y } ) ) } = { <. x , y >. | { x , y } e. dom G } |
| 12 | 4 11 | eqtrdi | |- ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom G } ) |