This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebra of n x n matrices over a ring r. (Contributed by Stefan O'Rear, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mat | |- Mat = ( n e. Fin , r e. _V |-> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmat | |- Mat |
|
| 1 | vn | |- n |
|
| 2 | cfn | |- Fin |
|
| 3 | vr | |- r |
|
| 4 | cvv | |- _V |
|
| 5 | 3 | cv | |- r |
| 6 | cfrlm | |- freeLMod |
|
| 7 | 1 | cv | |- n |
| 8 | 7 7 | cxp | |- ( n X. n ) |
| 9 | 5 8 6 | co | |- ( r freeLMod ( n X. n ) ) |
| 10 | csts | |- sSet |
|
| 11 | cmulr | |- .r |
|
| 12 | cnx | |- ndx |
|
| 13 | 12 11 | cfv | |- ( .r ` ndx ) |
| 14 | cmmul | |- maMul |
|
| 15 | 7 7 7 | cotp | |- <. n , n , n >. |
| 16 | 5 15 14 | co | |- ( r maMul <. n , n , n >. ) |
| 17 | 13 16 | cop | |- <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. |
| 18 | 9 17 10 | co | |- ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) |
| 19 | 1 3 2 4 18 | cmpo | |- ( n e. Fin , r e. _V |-> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) ) |
| 20 | 0 19 | wceq | |- Mat = ( n e. Fin , r e. _V |-> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) ) |