This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegxrcl.d | |- D = ( I mDeg R ) |
|
| mdegxrcl.p | |- P = ( I mPoly R ) |
||
| mdegxrcl.b | |- B = ( Base ` P ) |
||
| Assertion | mdegxrf | |- D : B --> RR* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegxrcl.d | |- D = ( I mDeg R ) |
|
| 2 | mdegxrcl.p | |- P = ( I mPoly R ) |
|
| 3 | mdegxrcl.b | |- B = ( Base ` P ) |
|
| 4 | xrltso | |- < Or RR* |
|
| 5 | 4 | supex | |- sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) e. _V |
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | eqid | |- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
|
| 8 | eqid | |- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
|
| 9 | 1 2 3 6 7 8 | mdegfval | |- D = ( z e. B |-> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( z supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 10 | 5 9 | fnmpti | |- D Fn B |
| 11 | 1 2 3 | mdegxrcl | |- ( f e. B -> ( D ` f ) e. RR* ) |
| 12 | 11 | rgen | |- A. f e. B ( D ` f ) e. RR* |
| 13 | ffnfv | |- ( D : B --> RR* <-> ( D Fn B /\ A. f e. B ( D ` f ) e. RR* ) ) |
|
| 14 | 10 12 13 | mpbir2an | |- D : B --> RR* |