This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegxrcl.d | |- D = ( I mDeg R ) |
|
| mdegxrcl.p | |- P = ( I mPoly R ) |
||
| mdegxrcl.b | |- B = ( Base ` P ) |
||
| Assertion | mdegxrcl | |- ( F e. B -> ( D ` F ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegxrcl.d | |- D = ( I mDeg R ) |
|
| 2 | mdegxrcl.p | |- P = ( I mPoly R ) |
|
| 3 | mdegxrcl.b | |- B = ( Base ` P ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | eqid | |- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
|
| 6 | eqid | |- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
|
| 7 | 1 2 3 4 5 6 | mdegval | |- ( F e. B -> ( D ` F ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 8 | imassrn | |- ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
|
| 9 | 5 6 | tdeglem1 | |- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) : { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } --> NN0 |
| 10 | frn | |- ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) : { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } --> NN0 -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ NN0 ) |
|
| 11 | 9 10 | mp1i | |- ( F e. B -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ NN0 ) |
| 12 | nn0ssre | |- NN0 C_ RR |
|
| 13 | ressxr | |- RR C_ RR* |
|
| 14 | 12 13 | sstri | |- NN0 C_ RR* |
| 15 | 11 14 | sstrdi | |- ( F e. B -> ran ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) C_ RR* ) |
| 16 | 8 15 | sstrid | |- ( F e. B -> ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* ) |
| 17 | supxrcl | |- ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. RR* ) |
|
| 18 | 16 17 | syl | |- ( F e. B -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. RR* ) |
| 19 | 7 18 | eqeltrd | |- ( F e. B -> ( D ` F ) e. RR* ) |