This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multivariate degree function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegval.d | |- D = ( I mDeg R ) |
|
| mdegval.p | |- P = ( I mPoly R ) |
||
| mdegval.b | |- B = ( Base ` P ) |
||
| mdegval.z | |- .0. = ( 0g ` R ) |
||
| mdegval.a | |- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
||
| mdegval.h | |- H = ( h e. A |-> ( CCfld gsum h ) ) |
||
| Assertion | mdegfval | |- D = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegval.d | |- D = ( I mDeg R ) |
|
| 2 | mdegval.p | |- P = ( I mPoly R ) |
|
| 3 | mdegval.b | |- B = ( Base ` P ) |
|
| 4 | mdegval.z | |- .0. = ( 0g ` R ) |
|
| 5 | mdegval.a | |- A = { m e. ( NN0 ^m I ) | ( `' m " NN ) e. Fin } |
|
| 6 | mdegval.h | |- H = ( h e. A |-> ( CCfld gsum h ) ) |
|
| 7 | oveq12 | |- ( ( i = I /\ r = R ) -> ( i mPoly r ) = ( I mPoly R ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( ( i = I /\ r = R ) -> ( i mPoly r ) = P ) |
| 9 | 8 | fveq2d | |- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = ( Base ` P ) ) |
| 10 | 9 3 | eqtr4di | |- ( ( i = I /\ r = R ) -> ( Base ` ( i mPoly r ) ) = B ) |
| 11 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 12 | 11 4 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 13 | 12 | oveq2d | |- ( r = R -> ( f supp ( 0g ` r ) ) = ( f supp .0. ) ) |
| 14 | 13 | mpteq1d | |- ( r = R -> ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) = ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
| 15 | 14 | rneqd | |- ( r = R -> ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) = ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
| 16 | 15 | supeq1d | |- ( r = R -> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) |
| 17 | 16 | adantl | |- ( ( i = I /\ r = R ) -> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) |
| 18 | 10 17 | mpteq12dv | |- ( ( i = I /\ r = R ) -> ( f e. ( Base ` ( i mPoly r ) ) |-> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) ) = ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
| 19 | df-mdeg | |- mDeg = ( i e. _V , r e. _V |-> ( f e. ( Base ` ( i mPoly r ) ) |-> sup ( ran ( h e. ( f supp ( 0g ` r ) ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
|
| 20 | 3 | fvexi | |- B e. _V |
| 21 | 20 | mptex | |- ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) e. _V |
| 22 | 18 19 21 | ovmpoa | |- ( ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) ) |
| 23 | 6 | reseq1i | |- ( H |` ( f supp .0. ) ) = ( ( h e. A |-> ( CCfld gsum h ) ) |` ( f supp .0. ) ) |
| 24 | suppssdm | |- ( f supp .0. ) C_ dom f |
|
| 25 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 26 | simpr | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> f e. B ) |
|
| 27 | 2 25 3 5 26 | mplelf | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> f : A --> ( Base ` R ) ) |
| 28 | 24 27 | fssdm | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( f supp .0. ) C_ A ) |
| 29 | 28 | resmptd | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( ( h e. A |-> ( CCfld gsum h ) ) |` ( f supp .0. ) ) = ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) ) |
| 30 | 23 29 | eqtr2id | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ( H |` ( f supp .0. ) ) ) |
| 31 | 30 | rneqd | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ran ( H |` ( f supp .0. ) ) ) |
| 32 | df-ima | |- ( H " ( f supp .0. ) ) = ran ( H |` ( f supp .0. ) ) |
|
| 33 | 31 32 | eqtr4di | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) = ( H " ( f supp .0. ) ) ) |
| 34 | 33 | supeq1d | |- ( ( ( I e. _V /\ R e. _V ) /\ f e. B ) -> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) = sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
| 35 | 34 | mpteq2dva | |- ( ( I e. _V /\ R e. _V ) -> ( f e. B |-> sup ( ran ( h e. ( f supp .0. ) |-> ( CCfld gsum h ) ) , RR* , < ) ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
| 36 | 22 35 | eqtrd | |- ( ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
| 37 | reldmmdeg | |- Rel dom mDeg |
|
| 38 | 37 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = (/) ) |
| 39 | mpt0 | |- ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) = (/) |
|
| 40 | 38 39 | eqtr4di | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
| 41 | reldmmpl | |- Rel dom mPoly |
|
| 42 | 41 | ovprc | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mPoly R ) = (/) ) |
| 43 | 2 42 | eqtrid | |- ( -. ( I e. _V /\ R e. _V ) -> P = (/) ) |
| 44 | 43 | fveq2d | |- ( -. ( I e. _V /\ R e. _V ) -> ( Base ` P ) = ( Base ` (/) ) ) |
| 45 | base0 | |- (/) = ( Base ` (/) ) |
|
| 46 | 44 3 45 | 3eqtr4g | |- ( -. ( I e. _V /\ R e. _V ) -> B = (/) ) |
| 47 | 46 | mpteq1d | |- ( -. ( I e. _V /\ R e. _V ) -> ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) = ( f e. (/) |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
| 48 | 40 47 | eqtr4d | |- ( -. ( I e. _V /\ R e. _V ) -> ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) ) |
| 49 | 36 48 | pm2.61i | |- ( I mDeg R ) = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |
| 50 | 1 49 | eqtri | |- D = ( f e. B |-> sup ( ( H " ( f supp .0. ) ) , RR* , < ) ) |