This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volss | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` A ) <_ ( vol ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> A C_ B ) |
|
| 2 | mblss | |- ( B e. dom vol -> B C_ RR ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> B C_ RR ) |
| 4 | ovolss | |- ( ( A C_ B /\ B C_ RR ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
|
| 5 | 1 3 4 | syl2anc | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol* ` A ) <_ ( vol* ` B ) ) |
| 6 | mblvol | |- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` A ) = ( vol* ` A ) ) |
| 8 | mblvol | |- ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` B ) = ( vol* ` B ) ) |
| 10 | 5 7 9 | 3brtr4d | |- ( ( A e. dom vol /\ B e. dom vol /\ A C_ B ) -> ( vol ` A ) <_ ( vol ` B ) ) |