This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 17-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsnen.1 | |- A e. _V |
|
| mapsnen.2 | |- B e. _V |
||
| Assertion | mapsnen | |- ( A ^m { B } ) ~~ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsnen.1 | |- A e. _V |
|
| 2 | mapsnen.2 | |- B e. _V |
|
| 3 | id | |- ( A e. _V -> A e. _V ) |
|
| 4 | 2 | a1i | |- ( A e. _V -> B e. _V ) |
| 5 | 3 4 | mapsnend | |- ( A e. _V -> ( A ^m { B } ) ~~ A ) |
| 6 | 1 5 | ax-mp | |- ( A ^m { B } ) ~~ A |