This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define 'less than' on the set of extended reals. Definition 12-3.1 of
Gleason p. 173. Note that in our postulates for complex numbers,
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltxr | |- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clt | |- < |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | cr | |- RR |
|
| 5 | 3 4 | wcel | |- x e. RR |
| 6 | 2 | cv | |- y |
| 7 | 6 4 | wcel | |- y e. RR |
| 8 | cltrr | |- |
|
| 9 | 3 6 8 | wbr | |- x |
| 10 | 5 7 9 | w3a | |- ( x e. RR /\ y e. RR /\ x |
| 11 | 10 1 2 | copab | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 12 | cmnf | |- -oo |
|
| 13 | 12 | csn | |- { -oo } |
| 14 | 4 13 | cun | |- ( RR u. { -oo } ) |
| 15 | cpnf | |- +oo |
|
| 16 | 15 | csn | |- { +oo } |
| 17 | 14 16 | cxp | |- ( ( RR u. { -oo } ) X. { +oo } ) |
| 18 | 13 4 | cxp | |- ( { -oo } X. RR ) |
| 19 | 17 18 | cun | |- ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) |
| 20 | 11 19 | cun | |- ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 21 | 0 20 | wceq | |- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |