This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ltord1 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltord.1 | |- ( x = y -> A = B ) |
|
| ltord.2 | |- ( x = C -> A = M ) |
||
| ltord.3 | |- ( x = D -> A = N ) |
||
| ltord.4 | |- S C_ RR |
||
| ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
||
| Assertion | ltordlem | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D -> M < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | |- ( x = y -> A = B ) |
|
| 2 | ltord.2 | |- ( x = C -> A = M ) |
|
| 3 | ltord.3 | |- ( x = D -> A = N ) |
|
| 4 | ltord.4 | |- S C_ RR |
|
| 5 | ltord.5 | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 6 | ltord.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x < y -> A < B ) ) |
|
| 7 | 6 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( x < y -> A < B ) ) |
| 8 | breq1 | |- ( x = C -> ( x < y <-> C < y ) ) |
|
| 9 | 2 | breq1d | |- ( x = C -> ( A < B <-> M < B ) ) |
| 10 | 8 9 | imbi12d | |- ( x = C -> ( ( x < y -> A < B ) <-> ( C < y -> M < B ) ) ) |
| 11 | breq2 | |- ( y = D -> ( C < y <-> C < D ) ) |
|
| 12 | eqeq1 | |- ( x = y -> ( x = D <-> y = D ) ) |
|
| 13 | 1 | eqeq1d | |- ( x = y -> ( A = N <-> B = N ) ) |
| 14 | 12 13 | imbi12d | |- ( x = y -> ( ( x = D -> A = N ) <-> ( y = D -> B = N ) ) ) |
| 15 | 14 3 | chvarvv | |- ( y = D -> B = N ) |
| 16 | 15 | breq2d | |- ( y = D -> ( M < B <-> M < N ) ) |
| 17 | 11 16 | imbi12d | |- ( y = D -> ( ( C < y -> M < B ) <-> ( C < D -> M < N ) ) ) |
| 18 | 10 17 | rspc2v | |- ( ( C e. S /\ D e. S ) -> ( A. x e. S A. y e. S ( x < y -> A < B ) -> ( C < D -> M < N ) ) ) |
| 19 | 7 18 | mpan9 | |- ( ( ph /\ ( C e. S /\ D e. S ) ) -> ( C < D -> M < N ) ) |