This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul12a | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> A e. RR ) |
|
| 2 | simpllr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> B e. RR ) |
|
| 3 | simpll | |- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> C e. RR ) |
|
| 4 | simprl | |- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> 0 <_ C ) |
|
| 5 | 3 4 | jca | |- ( ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 6 | 5 | ad2ant2l | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 7 | ltle | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) ) |
|
| 8 | 7 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) |
| 9 | 8 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> A <_ B ) |
| 10 | 9 | ad2ant2r | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> A <_ B ) |
| 11 | lemul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |
|
| 12 | 1 2 6 10 11 | syl31anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) <_ ( B x. C ) ) |
| 13 | simplrl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> C e. RR ) |
|
| 14 | simplrr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> D e. RR ) |
|
| 15 | simpllr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> B e. RR ) |
|
| 16 | 0re | |- 0 e. RR |
|
| 17 | lelttr | |- ( ( 0 e. RR /\ A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
|
| 18 | 16 17 | mp3an1 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A < B ) -> 0 < B ) ) |
| 19 | 18 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> 0 < B ) |
| 20 | 19 | adantlr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> 0 < B ) |
| 21 | ltmul2 | |- ( ( C e. RR /\ D e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C < D <-> ( B x. C ) < ( B x. D ) ) ) |
|
| 22 | 13 14 15 20 21 | syl112anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) -> ( C < D <-> ( B x. C ) < ( B x. D ) ) ) |
| 23 | 22 | biimpa | |- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( 0 <_ A /\ A < B ) ) /\ C < D ) -> ( B x. C ) < ( B x. D ) ) |
| 24 | 23 | anasss | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ C < D ) ) -> ( B x. C ) < ( B x. D ) ) |
| 25 | 24 | adantrrl | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( B x. C ) < ( B x. D ) ) |
| 26 | remulcl | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
|
| 27 | 26 | ad2ant2r | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A x. C ) e. RR ) |
| 28 | remulcl | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
|
| 29 | 28 | ad2ant2lr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. C ) e. RR ) |
| 30 | remulcl | |- ( ( B e. RR /\ D e. RR ) -> ( B x. D ) e. RR ) |
|
| 31 | 30 | ad2ant2l | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B x. D ) e. RR ) |
| 32 | lelttr | |- ( ( ( A x. C ) e. RR /\ ( B x. C ) e. RR /\ ( B x. D ) e. RR ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
|
| 33 | 27 29 31 32 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
| 34 | 33 | adantr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( ( ( A x. C ) <_ ( B x. C ) /\ ( B x. C ) < ( B x. D ) ) -> ( A x. C ) < ( B x. D ) ) ) |
| 35 | 12 25 34 | mp2and | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( ( 0 <_ A /\ A < B ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |
| 36 | 35 | an4s | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( ( C e. RR /\ D e. RR ) /\ ( 0 <_ C /\ C < D ) ) ) -> ( A x. C ) < ( B x. D ) ) |