This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2msq | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2msq1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR /\ A < B ) -> ( A x. A ) < ( B x. B ) ) |
|
| 2 | 1 | 3expia | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR ) -> ( A < B -> ( A x. A ) < ( B x. B ) ) ) |
| 3 | 2 | adantrr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B -> ( A x. A ) < ( B x. B ) ) ) |
| 4 | id | |- ( A = B -> A = B ) |
|
| 5 | 4 4 | oveq12d | |- ( A = B -> ( A x. A ) = ( B x. B ) ) |
| 6 | 5 | a1i | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A = B -> ( A x. A ) = ( B x. B ) ) ) |
| 7 | lt2msq1 | |- ( ( ( B e. RR /\ 0 <_ B ) /\ A e. RR /\ B < A ) -> ( B x. B ) < ( A x. A ) ) |
|
| 8 | 7 | 3expia | |- ( ( ( B e. RR /\ 0 <_ B ) /\ A e. RR ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
| 9 | 8 | adantrr | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( A e. RR /\ 0 <_ A ) ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
| 10 | 9 | ancoms | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B < A -> ( B x. B ) < ( A x. A ) ) ) |
| 11 | 6 10 | orim12d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A = B \/ B < A ) -> ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) ) ) |
| 12 | 11 | con3d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( -. ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) -> -. ( A = B \/ B < A ) ) ) |
| 13 | simpll | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> A e. RR ) |
|
| 14 | 13 13 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. A ) e. RR ) |
| 15 | simprl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> B e. RR ) |
|
| 16 | 15 15 | remulcld | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( B x. B ) e. RR ) |
| 17 | 14 16 | lttrid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) < ( B x. B ) <-> -. ( ( A x. A ) = ( B x. B ) \/ ( B x. B ) < ( A x. A ) ) ) ) |
| 18 | 13 15 | lttrid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 19 | 12 17 18 | 3imtr4d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A x. A ) < ( B x. B ) -> A < B ) ) |
| 20 | 3 19 | impbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) ) |