This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0v.x | |- X = ( W |`s U ) |
|
| lss0v.o | |- .0. = ( 0g ` W ) |
||
| lss0v.z | |- Z = ( 0g ` X ) |
||
| lss0v.l | |- L = ( LSubSp ` W ) |
||
| Assertion | lss0v | |- ( ( W e. LMod /\ U e. L ) -> Z = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0v.x | |- X = ( W |`s U ) |
|
| 2 | lss0v.o | |- .0. = ( 0g ` W ) |
|
| 3 | lss0v.z | |- Z = ( 0g ` X ) |
|
| 4 | lss0v.l | |- L = ( LSubSp ` W ) |
|
| 5 | 0ss | |- (/) C_ U |
|
| 6 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
| 7 | eqid | |- ( LSpan ` X ) = ( LSpan ` X ) |
|
| 8 | 1 6 7 4 | lsslsp | |- ( ( W e. LMod /\ U e. L /\ (/) C_ U ) -> ( ( LSpan ` X ) ` (/) ) = ( ( LSpan ` W ) ` (/) ) ) |
| 9 | 5 8 | mp3an3 | |- ( ( W e. LMod /\ U e. L ) -> ( ( LSpan ` X ) ` (/) ) = ( ( LSpan ` W ) ` (/) ) ) |
| 10 | 1 4 | lsslmod | |- ( ( W e. LMod /\ U e. L ) -> X e. LMod ) |
| 11 | 3 7 | lsp0 | |- ( X e. LMod -> ( ( LSpan ` X ) ` (/) ) = { Z } ) |
| 12 | 10 11 | syl | |- ( ( W e. LMod /\ U e. L ) -> ( ( LSpan ` X ) ` (/) ) = { Z } ) |
| 13 | 2 6 | lsp0 | |- ( W e. LMod -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 14 | 13 | adantr | |- ( ( W e. LMod /\ U e. L ) -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 15 | 9 12 14 | 3eqtr3d | |- ( ( W e. LMod /\ U e. L ) -> { Z } = { .0. } ) |
| 16 | 15 | unieqd | |- ( ( W e. LMod /\ U e. L ) -> U. { Z } = U. { .0. } ) |
| 17 | 3 | fvexi | |- Z e. _V |
| 18 | 17 | unisn | |- U. { Z } = Z |
| 19 | 2 | fvexi | |- .0. e. _V |
| 20 | 19 | unisn | |- U. { .0. } = .0. |
| 21 | 16 18 20 | 3eqtr3g | |- ( ( W e. LMod /\ U e. L ) -> Z = .0. ) |