This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssats2.s | |- S = ( LSubSp ` W ) |
|
| lssats2.n | |- N = ( LSpan ` W ) |
||
| lssats2.w | |- ( ph -> W e. LMod ) |
||
| lssats2.u | |- ( ph -> U e. S ) |
||
| Assertion | lssats2 | |- ( ph -> U = U_ x e. U ( N ` { x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssats2.s | |- S = ( LSubSp ` W ) |
|
| 2 | lssats2.n | |- N = ( LSpan ` W ) |
|
| 3 | lssats2.w | |- ( ph -> W e. LMod ) |
|
| 4 | lssats2.u | |- ( ph -> U e. S ) |
|
| 5 | simpr | |- ( ( ph /\ y e. U ) -> y e. U ) |
|
| 6 | 3 | adantr | |- ( ( ph /\ y e. U ) -> W e. LMod ) |
| 7 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 8 | 7 1 | lssel | |- ( ( U e. S /\ y e. U ) -> y e. ( Base ` W ) ) |
| 9 | 4 8 | sylan | |- ( ( ph /\ y e. U ) -> y e. ( Base ` W ) ) |
| 10 | 7 2 | lspsnid | |- ( ( W e. LMod /\ y e. ( Base ` W ) ) -> y e. ( N ` { y } ) ) |
| 11 | 6 9 10 | syl2anc | |- ( ( ph /\ y e. U ) -> y e. ( N ` { y } ) ) |
| 12 | sneq | |- ( x = y -> { x } = { y } ) |
|
| 13 | 12 | fveq2d | |- ( x = y -> ( N ` { x } ) = ( N ` { y } ) ) |
| 14 | 13 | eleq2d | |- ( x = y -> ( y e. ( N ` { x } ) <-> y e. ( N ` { y } ) ) ) |
| 15 | 14 | rspcev | |- ( ( y e. U /\ y e. ( N ` { y } ) ) -> E. x e. U y e. ( N ` { x } ) ) |
| 16 | 5 11 15 | syl2anc | |- ( ( ph /\ y e. U ) -> E. x e. U y e. ( N ` { x } ) ) |
| 17 | 16 | ex | |- ( ph -> ( y e. U -> E. x e. U y e. ( N ` { x } ) ) ) |
| 18 | 3 | adantr | |- ( ( ph /\ x e. U ) -> W e. LMod ) |
| 19 | 4 | adantr | |- ( ( ph /\ x e. U ) -> U e. S ) |
| 20 | simpr | |- ( ( ph /\ x e. U ) -> x e. U ) |
|
| 21 | 1 2 18 19 20 | ellspsn5 | |- ( ( ph /\ x e. U ) -> ( N ` { x } ) C_ U ) |
| 22 | 21 | sseld | |- ( ( ph /\ x e. U ) -> ( y e. ( N ` { x } ) -> y e. U ) ) |
| 23 | 22 | rexlimdva | |- ( ph -> ( E. x e. U y e. ( N ` { x } ) -> y e. U ) ) |
| 24 | 17 23 | impbid | |- ( ph -> ( y e. U <-> E. x e. U y e. ( N ` { x } ) ) ) |
| 25 | eliun | |- ( y e. U_ x e. U ( N ` { x } ) <-> E. x e. U y e. ( N ` { x } ) ) |
|
| 26 | 24 25 | bitr4di | |- ( ph -> ( y e. U <-> y e. U_ x e. U ( N ` { x } ) ) ) |
| 27 | 26 | eqrdv | |- ( ph -> U = U_ x e. U ( N ` { x } ) ) |