This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express atomisticity (a subspace is the union of its atoms). (Contributed by NM, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssats2.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lssats2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lssats2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lssats2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| Assertion | lssats2 | ⊢ ( 𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 ( 𝑁 ‘ { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssats2.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lssats2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lssats2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lssats2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 8 | 7 1 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 9 | 4 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 10 | 7 2 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 11 | 6 9 10 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 12 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ { 𝑥 } ) = ( 𝑁 ‘ { 𝑦 } ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ↔ 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) ) |
| 15 | 14 | rspcev | ⊢ ( ( 𝑦 ∈ 𝑈 ∧ 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) → ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ) |
| 16 | 5 11 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ) |
| 17 | 16 | ex | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑈 → ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 21 | 1 2 18 19 20 | ellspsn5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑥 } ) ⊆ 𝑈 ) |
| 22 | 21 | sseld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) → 𝑦 ∈ 𝑈 ) ) |
| 23 | 22 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) → 𝑦 ∈ 𝑈 ) ) |
| 24 | 17 23 | impbid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑈 ↔ ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 25 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑈 𝑦 ∈ ( 𝑁 ‘ { 𝑥 } ) ) | |
| 26 | 24 25 | bitr4di | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑈 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑈 ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 27 | 26 | eqrdv | ⊢ ( 𝜑 → 𝑈 = ∪ 𝑥 ∈ 𝑈 ( 𝑁 ‘ { 𝑥 } ) ) |