This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in Schechter p. 276. (Contributed by NM, 2-Jun-2004) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanval | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-span | |- span = ( y e. ~P ~H |-> |^| { x e. SH | y C_ x } ) |
|
| 2 | sseq1 | |- ( y = A -> ( y C_ x <-> A C_ x ) ) |
|
| 3 | 2 | rabbidv | |- ( y = A -> { x e. SH | y C_ x } = { x e. SH | A C_ x } ) |
| 4 | 3 | inteqd | |- ( y = A -> |^| { x e. SH | y C_ x } = |^| { x e. SH | A C_ x } ) |
| 5 | ax-hilex | |- ~H e. _V |
|
| 6 | 5 | elpw2 | |- ( A e. ~P ~H <-> A C_ ~H ) |
| 7 | 6 | biimpri | |- ( A C_ ~H -> A e. ~P ~H ) |
| 8 | helsh | |- ~H e. SH |
|
| 9 | sseq2 | |- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
|
| 10 | 9 | rspcev | |- ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) |
| 11 | 8 10 | mpan | |- ( A C_ ~H -> E. x e. SH A C_ x ) |
| 12 | intexrab | |- ( E. x e. SH A C_ x <-> |^| { x e. SH | A C_ x } e. _V ) |
|
| 13 | 11 12 | sylib | |- ( A C_ ~H -> |^| { x e. SH | A C_ x } e. _V ) |
| 14 | 1 4 7 13 | fvmptd3 | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |