This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspvadd.v | |- V = ( Base ` W ) |
|
| lspvadd.a | |- .+ = ( +g ` W ) |
||
| lspvadd.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspvadd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X , Y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspvadd.v | |- V = ( Base ` W ) |
|
| 2 | lspvadd.a | |- .+ = ( +g ` W ) |
|
| 3 | lspvadd.n | |- N = ( LSpan ` W ) |
|
| 4 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 5 | simp1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> W e. LMod ) |
|
| 6 | prssi | |- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
|
| 7 | 6 | 3adant1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
| 8 | 1 4 3 | lspcl | |- ( ( W e. LMod /\ { X , Y } C_ V ) -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 9 | 5 7 8 | syl2anc | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 10 | 1 3 | lspssid | |- ( ( W e. LMod /\ { X , Y } C_ V ) -> { X , Y } C_ ( N ` { X , Y } ) ) |
| 11 | 5 7 10 | syl2anc | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> { X , Y } C_ ( N ` { X , Y } ) ) |
| 12 | prssg | |- ( ( X e. V /\ Y e. V ) -> ( ( X e. ( N ` { X , Y } ) /\ Y e. ( N ` { X , Y } ) ) <-> { X , Y } C_ ( N ` { X , Y } ) ) ) |
|
| 13 | 12 | 3adant1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( X e. ( N ` { X , Y } ) /\ Y e. ( N ` { X , Y } ) ) <-> { X , Y } C_ ( N ` { X , Y } ) ) ) |
| 14 | 11 13 | mpbird | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X e. ( N ` { X , Y } ) /\ Y e. ( N ` { X , Y } ) ) ) |
| 15 | 2 4 | lssvacl | |- ( ( ( W e. LMod /\ ( N ` { X , Y } ) e. ( LSubSp ` W ) ) /\ ( X e. ( N ` { X , Y } ) /\ Y e. ( N ` { X , Y } ) ) ) -> ( X .+ Y ) e. ( N ` { X , Y } ) ) |
| 16 | 5 9 14 15 | syl21anc | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. ( N ` { X , Y } ) ) |
| 17 | 4 3 5 9 16 | ellspsn5 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X , Y } ) ) |