This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmless12 | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> ( R .(+) T ) C_ ( S .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> G e. Grp ) |
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 6 | 5 | ad2antrr | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> S C_ ( Base ` G ) ) |
| 7 | simprr | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> T C_ U ) |
|
| 8 | 4 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 9 | 8 | ad2antlr | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> U C_ ( Base ` G ) ) |
| 10 | 7 9 | sstrd | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> T C_ ( Base ` G ) ) |
| 11 | simprl | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> R C_ S ) |
|
| 12 | 4 1 | lsmless1x | |- ( ( ( G e. Grp /\ S C_ ( Base ` G ) /\ T C_ ( Base ` G ) ) /\ R C_ S ) -> ( R .(+) T ) C_ ( S .(+) T ) ) |
| 13 | 3 6 10 11 12 | syl31anc | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> ( R .(+) T ) C_ ( S .(+) T ) ) |
| 14 | simpll | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> S e. ( SubGrp ` G ) ) |
|
| 15 | simplr | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> U e. ( SubGrp ` G ) ) |
|
| 16 | 1 | lsmless2 | |- ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( S .(+) T ) C_ ( S .(+) U ) ) |
| 17 | 14 15 7 16 | syl3anc | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> ( S .(+) T ) C_ ( S .(+) U ) ) |
| 18 | 13 17 | sstrd | |- ( ( ( S e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( R C_ S /\ T C_ U ) ) -> ( R .(+) T ) C_ ( S .(+) U ) ) |