This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmss1 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( T .(+) U ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | ssid | |- U C_ U |
|
| 3 | 1 | lsmlub | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T C_ U /\ U C_ U ) <-> ( T .(+) U ) C_ U ) ) |
| 4 | 3 | 3anidm23 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T C_ U /\ U C_ U ) <-> ( T .(+) U ) C_ U ) ) |
| 5 | 4 | biimpd | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( T C_ U /\ U C_ U ) -> ( T .(+) U ) C_ U ) ) |
| 6 | 2 5 | mpan2i | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T C_ U -> ( T .(+) U ) C_ U ) ) |
| 7 | 6 | 3impia | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( T .(+) U ) C_ U ) |
| 8 | 1 | lsmub2 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( T .(+) U ) ) |
| 9 | 8 | 3adant3 | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> U C_ ( T .(+) U ) ) |
| 10 | 7 9 | eqssd | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ U ) -> ( T .(+) U ) = U ) |