This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsm01.z | |- .0. = ( 0g ` G ) |
|
| lsm01.p | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsm02 | |- ( X e. ( SubGrp ` G ) -> ( { .0. } .(+) X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsm01.z | |- .0. = ( 0g ` G ) |
|
| 2 | lsm01.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | subgrcl | |- ( X e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 4 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 5 | 3 4 | syl | |- ( X e. ( SubGrp ` G ) -> { .0. } e. ( SubGrp ` G ) ) |
| 6 | id | |- ( X e. ( SubGrp ` G ) -> X e. ( SubGrp ` G ) ) |
|
| 7 | 1 | subg0cl | |- ( X e. ( SubGrp ` G ) -> .0. e. X ) |
| 8 | 7 | snssd | |- ( X e. ( SubGrp ` G ) -> { .0. } C_ X ) |
| 9 | 2 | lsmss1 | |- ( ( { .0. } e. ( SubGrp ` G ) /\ X e. ( SubGrp ` G ) /\ { .0. } C_ X ) -> ( { .0. } .(+) X ) = X ) |
| 10 | 5 6 8 9 | syl3anc | |- ( X e. ( SubGrp ` G ) -> ( { .0. } .(+) X ) = X ) |