This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | lpss3 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( limPt ` J ) ` T ) C_ ( ( limPt ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | simp1 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> J e. Top ) |
|
| 3 | simp2 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> S C_ X ) |
|
| 4 | 3 | ssdifssd | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( S \ { x } ) C_ X ) |
| 5 | simp3 | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> T C_ S ) |
|
| 6 | 5 | ssdifd | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( T \ { x } ) C_ ( S \ { x } ) ) |
| 7 | 1 | clsss | |- ( ( J e. Top /\ ( S \ { x } ) C_ X /\ ( T \ { x } ) C_ ( S \ { x } ) ) -> ( ( cls ` J ) ` ( T \ { x } ) ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 8 | 2 4 6 7 | syl3anc | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( cls ` J ) ` ( T \ { x } ) ) C_ ( ( cls ` J ) ` ( S \ { x } ) ) ) |
| 9 | 8 | sseld | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( x e. ( ( cls ` J ) ` ( T \ { x } ) ) -> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 10 | 5 3 | sstrd | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> T C_ X ) |
| 11 | 1 | islp | |- ( ( J e. Top /\ T C_ X ) -> ( x e. ( ( limPt ` J ) ` T ) <-> x e. ( ( cls ` J ) ` ( T \ { x } ) ) ) ) |
| 12 | 2 10 11 | syl2anc | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( x e. ( ( limPt ` J ) ` T ) <-> x e. ( ( cls ` J ) ` ( T \ { x } ) ) ) ) |
| 13 | 1 | islp | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( limPt ` J ) ` S ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 14 | 2 3 13 | syl2anc | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( x e. ( ( limPt ` J ) ` S ) <-> x e. ( ( cls ` J ) ` ( S \ { x } ) ) ) ) |
| 15 | 9 12 14 | 3imtr4d | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( x e. ( ( limPt ` J ) ` T ) -> x e. ( ( limPt ` J ) ` S ) ) ) |
| 16 | 15 | ssrdv | |- ( ( J e. Top /\ S C_ X /\ T C_ S ) -> ( ( limPt ` J ) ` T ) C_ ( ( limPt ` J ) ` S ) ) |