This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mopni.1 | |- J = ( MetOpen ` D ) |
|
| blcld.3 | |- S = { z e. X | ( P D z ) <_ R } |
||
| Assertion | blsscls2 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) -> S C_ ( P ( ball ` D ) T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
| 2 | blcld.3 | |- S = { z e. X | ( P D z ) <_ R } |
|
| 3 | simplr3 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> R < T ) |
|
| 4 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ z e. X ) -> ( P D z ) e. RR* ) |
|
| 5 | 4 | ad4ant124 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> ( P D z ) e. RR* ) |
| 6 | simplr1 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> R e. RR* ) |
|
| 7 | simplr2 | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> T e. RR* ) |
|
| 8 | xrlelttr | |- ( ( ( P D z ) e. RR* /\ R e. RR* /\ T e. RR* ) -> ( ( ( P D z ) <_ R /\ R < T ) -> ( P D z ) < T ) ) |
|
| 9 | 8 | expcomd | |- ( ( ( P D z ) e. RR* /\ R e. RR* /\ T e. RR* ) -> ( R < T -> ( ( P D z ) <_ R -> ( P D z ) < T ) ) ) |
| 10 | 5 6 7 9 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> ( R < T -> ( ( P D z ) <_ R -> ( P D z ) < T ) ) ) |
| 11 | 3 10 | mpd | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> ( ( P D z ) <_ R -> ( P D z ) < T ) ) |
| 12 | simp2 | |- ( ( R e. RR* /\ T e. RR* /\ R < T ) -> T e. RR* ) |
|
| 13 | elbl2 | |- ( ( ( D e. ( *Met ` X ) /\ T e. RR* ) /\ ( P e. X /\ z e. X ) ) -> ( z e. ( P ( ball ` D ) T ) <-> ( P D z ) < T ) ) |
|
| 14 | 13 | an4s | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( T e. RR* /\ z e. X ) ) -> ( z e. ( P ( ball ` D ) T ) <-> ( P D z ) < T ) ) |
| 15 | 12 14 | sylanr1 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( ( R e. RR* /\ T e. RR* /\ R < T ) /\ z e. X ) ) -> ( z e. ( P ( ball ` D ) T ) <-> ( P D z ) < T ) ) |
| 16 | 15 | anassrs | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> ( z e. ( P ( ball ` D ) T ) <-> ( P D z ) < T ) ) |
| 17 | 11 16 | sylibrd | |- ( ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) /\ z e. X ) -> ( ( P D z ) <_ R -> z e. ( P ( ball ` D ) T ) ) ) |
| 18 | 17 | ralrimiva | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) -> A. z e. X ( ( P D z ) <_ R -> z e. ( P ( ball ` D ) T ) ) ) |
| 19 | rabss | |- ( { z e. X | ( P D z ) <_ R } C_ ( P ( ball ` D ) T ) <-> A. z e. X ( ( P D z ) <_ R -> z e. ( P ( ball ` D ) T ) ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) -> { z e. X | ( P D z ) <_ R } C_ ( P ( ball ` D ) T ) ) |
| 21 | 2 20 | eqsstrid | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ ( R e. RR* /\ T e. RR* /\ R < T ) ) -> S C_ ( P ( ball ` D ) T ) ) |