This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ball around a limit point P of a subset S includes a member of S (even if P e/ S ). (Contributed by NM, 9-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | lpbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | ineq1 | ⊢ ( 𝑥 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) = ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ) | |
| 3 | 2 | neeq1d | ⊢ ( 𝑥 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → ( ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ↔ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |
| 4 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 6 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝐽 ∈ Top ) |
| 8 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑆 ⊆ 𝑋 ) | |
| 9 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 10 | 5 9 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑋 = ∪ 𝐽 ) |
| 11 | 8 10 | sseqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 12 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | lpss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 14 | 7 11 13 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
| 15 | 14 4 | sseldd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑃 ∈ ∪ 𝐽 ) |
| 16 | 12 | islp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |
| 17 | 7 11 15 16 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |
| 18 | 4 17 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑥 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) |
| 19 | 15 10 | eleqtrrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑃 ∈ 𝑋 ) |
| 20 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) | |
| 21 | 1 | blnei | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 22 | 5 19 20 21 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 23 | 3 18 22 | rspcdva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) |
| 24 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ↔ ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑃 } ) ) ) | |
| 25 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑆 ∖ { 𝑃 } ) → 𝑥 ∈ 𝑆 ) | |
| 26 | 25 | anim2i | ⊢ ( ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑃 } ) ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∧ 𝑥 ∈ 𝑆 ) ) |
| 27 | 26 | ancomd | ⊢ ( ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑃 } ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 28 | 24 27 | sylbi | ⊢ ( 𝑥 ∈ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 29 | 28 | eximi | ⊢ ( ∃ 𝑥 𝑥 ∈ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ) |
| 30 | n0 | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ) | |
| 31 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ) | |
| 32 | 29 30 31 | 3imtr4i | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ → ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| 33 | 23 32 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) |