This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logcxp | |- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR+ /\ B e. RR ) -> A e. CC ) |
| 3 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 4 | 3 | adantr | |- ( ( A e. RR+ /\ B e. RR ) -> A =/= 0 ) |
| 5 | simpr | |- ( ( A e. RR+ /\ B e. RR ) -> B e. RR ) |
|
| 6 | 5 | recnd | |- ( ( A e. RR+ /\ B e. RR ) -> B e. CC ) |
| 7 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
|
| 8 | 2 4 6 7 | syl3anc | |- ( ( A e. RR+ /\ B e. RR ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 9 | 8 | fveq2d | |- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 10 | id | |- ( B e. RR -> B e. RR ) |
|
| 11 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 12 | remulcl | |- ( ( B e. RR /\ ( log ` A ) e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( A e. RR+ /\ B e. RR ) -> ( B x. ( log ` A ) ) e. RR ) |
| 14 | 13 | relogefd | |- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( B x. ( log ` A ) ) ) |
| 15 | 9 14 | eqtrd | |- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |