This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of relogmul to a complex left argument. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logmul2 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` A ) e. CC ) |
| 3 | relogcl | |- ( B e. RR+ -> ( log ` B ) e. RR ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` B ) e. RR ) |
| 5 | 4 | recnd | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` B ) e. CC ) |
| 6 | efadd | |- ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( exp ` ( ( log ` A ) + ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( log ` B ) ) ) ) |
|
| 7 | 2 5 6 | syl2anc | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( exp ` ( ( log ` A ) + ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) x. ( exp ` ( log ` B ) ) ) ) |
| 8 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 9 | 8 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( exp ` ( log ` A ) ) = A ) |
| 10 | reeflog | |- ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) |
|
| 11 | 10 | 3ad2ant3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( exp ` ( log ` B ) ) = B ) |
| 12 | 9 11 | oveq12d | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( ( exp ` ( log ` A ) ) x. ( exp ` ( log ` B ) ) ) = ( A x. B ) ) |
| 13 | 7 12 | eqtrd | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( exp ` ( ( log ` A ) + ( log ` B ) ) ) = ( A x. B ) ) |
| 14 | 13 | fveq2d | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` ( exp ` ( ( log ` A ) + ( log ` B ) ) ) ) = ( log ` ( A x. B ) ) ) |
| 15 | logrncl | |- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. ran log ) |
|
| 16 | 15 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` A ) e. ran log ) |
| 17 | logrnaddcl | |- ( ( ( log ` A ) e. ran log /\ ( log ` B ) e. RR ) -> ( ( log ` A ) + ( log ` B ) ) e. ran log ) |
|
| 18 | 16 4 17 | syl2anc | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( ( log ` A ) + ( log ` B ) ) e. ran log ) |
| 19 | logef | |- ( ( ( log ` A ) + ( log ` B ) ) e. ran log -> ( log ` ( exp ` ( ( log ` A ) + ( log ` B ) ) ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
|
| 20 | 18 19 | syl | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` ( exp ` ( ( log ` A ) + ( log ` B ) ) ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
| 21 | 14 20 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 /\ B e. RR+ ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |