This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is Hermitian if x .ih ( Tx ) takes only real values. Remark in ReedSimon p. 195. (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnophm.1 | ⊢ 𝑇 ∈ LinOp | |
| lnophm.2 | ⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ | ||
| Assertion | lnophmi | ⊢ 𝑇 ∈ HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnophm.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | lnophm.2 | ⊢ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ | |
| 3 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 4 | oveq1 | ⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) ) | |
| 5 | fveq2 | ⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ) |
| 7 | 4 6 | eqeq12d | ⊢ ( 𝑦 = if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) → ( ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑧 = if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) → ( ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih 𝑧 ) ↔ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) ) |
| 12 | ifhvhv0 | ⊢ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ∈ ℋ | |
| 13 | ifhvhv0 | ⊢ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ∈ ℋ | |
| 14 | 12 13 1 2 | lnophmlem2 | ⊢ ( if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝑦 ∈ ℋ , 𝑦 , 0ℎ ) ) ·ih if ( 𝑧 ∈ ℋ , 𝑧 , 0ℎ ) ) |
| 15 | 7 11 14 | dedth2h | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) |
| 16 | 15 | rgen2 | ⊢ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) |
| 17 | elhmop | ⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑇 ‘ 𝑦 ) ·ih 𝑧 ) ) ) | |
| 18 | 3 16 17 | mpbir2an | ⊢ 𝑇 ∈ HrmOp |