This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfnaddmuli | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( A x. ( T ` C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | hvmulcl | |- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
|
| 3 | 1 | lnfnaddi | |- ( ( B e. ~H /\ ( A .h C ) e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
| 4 | 2 3 | sylan2 | |- ( ( B e. ~H /\ ( A e. CC /\ C e. ~H ) ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
| 5 | 4 | 3impb | |- ( ( B e. ~H /\ A e. CC /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
| 6 | 5 | 3com12 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
| 7 | 1 | lnfnmuli | |- ( ( A e. CC /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A x. ( T ` C ) ) ) |
| 8 | 7 | 3adant2 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A x. ( T ` C ) ) ) |
| 9 | 8 | oveq2d | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( T ` B ) + ( T ` ( A .h C ) ) ) = ( ( T ` B ) + ( A x. ( T ` C ) ) ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( A x. ( T ` C ) ) ) ) |