This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfn0 | |- ( T e. LinFn -> ( T ` 0h ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( T ` 0h ) = ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) ) |
|
| 2 | 1 | eqeq1d | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( ( T ` 0h ) = 0 <-> ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) = 0 ) ) |
| 3 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 4 | 3 | elimel | |- if ( T e. LinFn , T , ( ~H X. { 0 } ) ) e. LinFn |
| 5 | 4 | lnfn0i | |- ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) = 0 |
| 6 | 2 5 | dedth | |- ( T e. LinFn -> ( T ` 0h ) = 0 ) |