This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgrnloopv.i | |- I = ( iEdg ` G ) |
|
| lfuhgrnloopv.a | |- A = dom I |
||
| lfuhgrnloopv.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
||
| Assertion | lfgredgge2 | |- ( ( I : A --> E /\ X e. A ) -> 2 <_ ( # ` ( I ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgrnloopv.i | |- I = ( iEdg ` G ) |
|
| 2 | lfuhgrnloopv.a | |- A = dom I |
|
| 3 | lfuhgrnloopv.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 4 | eqid | |- A = A |
|
| 5 | 4 3 | feq23i | |- ( I : A --> E <-> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 6 | 5 | biimpi | |- ( I : A --> E -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 7 | 6 | ffvelcdmda | |- ( ( I : A --> E /\ X e. A ) -> ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 8 | fveq2 | |- ( y = ( I ` X ) -> ( # ` y ) = ( # ` ( I ` X ) ) ) |
|
| 9 | 8 | breq2d | |- ( y = ( I ` X ) -> ( 2 <_ ( # ` y ) <-> 2 <_ ( # ` ( I ` X ) ) ) ) |
| 10 | fveq2 | |- ( x = y -> ( # ` x ) = ( # ` y ) ) |
|
| 11 | 10 | breq2d | |- ( x = y -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` y ) ) ) |
| 12 | 11 | cbvrabv | |- { x e. ~P V | 2 <_ ( # ` x ) } = { y e. ~P V | 2 <_ ( # ` y ) } |
| 13 | 9 12 | elrab2 | |- ( ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( I ` X ) e. ~P V /\ 2 <_ ( # ` ( I ` X ) ) ) ) |
| 14 | 13 | simprbi | |- ( ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } -> 2 <_ ( # ` ( I ` X ) ) ) |
| 15 | 7 14 | syl | |- ( ( I : A --> E /\ X e. A ) -> 2 <_ ( # ` ( I ` X ) ) ) |