This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 − 𝐶 ) ≤ ( 𝐵 − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 4 | 3 2 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 − 𝐶 ) ∈ ℝ ) |
| 5 | lesubadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝐵 − 𝐶 ) ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) ≤ ( 𝐵 − 𝐶 ) ↔ 𝐴 ≤ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) ≤ ( 𝐵 − 𝐶 ) ↔ 𝐴 ≤ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) |
| 7 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 8 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 9 | 7 8 | npcand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
| 10 | 9 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 11 | 6 10 | bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 − 𝐶 ) ≤ ( 𝐵 − 𝐶 ) ) ) |