This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ B <_ ( B - A ) ) <-> A = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( B e. RR -> 0 e. RR ) |
|
| 2 | letri3 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
| 4 | ancom | |- ( ( A <_ 0 /\ 0 <_ A ) <-> ( 0 <_ A /\ A <_ 0 ) ) |
|
| 5 | simpr | |- ( ( B e. RR /\ A e. RR ) -> A e. RR ) |
|
| 6 | 0red | |- ( ( B e. RR /\ A e. RR ) -> 0 e. RR ) |
|
| 7 | simpl | |- ( ( B e. RR /\ A e. RR ) -> B e. RR ) |
|
| 8 | lesub2 | |- ( ( A e. RR /\ 0 e. RR /\ B e. RR ) -> ( A <_ 0 <-> ( B - 0 ) <_ ( B - A ) ) ) |
|
| 9 | 5 6 7 8 | syl3anc | |- ( ( B e. RR /\ A e. RR ) -> ( A <_ 0 <-> ( B - 0 ) <_ ( B - A ) ) ) |
| 10 | 7 | recnd | |- ( ( B e. RR /\ A e. RR ) -> B e. CC ) |
| 11 | 10 | subid1d | |- ( ( B e. RR /\ A e. RR ) -> ( B - 0 ) = B ) |
| 12 | 11 | breq1d | |- ( ( B e. RR /\ A e. RR ) -> ( ( B - 0 ) <_ ( B - A ) <-> B <_ ( B - A ) ) ) |
| 13 | 9 12 | bitrd | |- ( ( B e. RR /\ A e. RR ) -> ( A <_ 0 <-> B <_ ( B - A ) ) ) |
| 14 | 13 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ 0 <-> B <_ ( B - A ) ) ) |
| 15 | 14 | anbi2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ A <_ 0 ) <-> ( 0 <_ A /\ B <_ ( B - A ) ) ) ) |
| 16 | 4 15 | bitrid | |- ( ( A e. RR /\ B e. RR ) -> ( ( A <_ 0 /\ 0 <_ A ) <-> ( 0 <_ A /\ B <_ ( B - A ) ) ) ) |
| 17 | 3 16 | bitr2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ B <_ ( B - A ) ) <-> A = 0 ) ) |