This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lesub0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐵 ∈ ℝ → 0 ∈ ℝ ) | |
| 2 | letri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 0 ↔ ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ) ) |
| 4 | ancom | ⊢ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 0 ) ) | |
| 5 | simpr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 6 | 0red | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 0 ∈ ℝ ) | |
| 7 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 8 | lesub2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ) ) | |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 10 | 7 | recnd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 11 | 10 | subid1d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 0 ) = 𝐵 ) |
| 12 | 11 | breq1d | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 − 0 ) ≤ ( 𝐵 − 𝐴 ) ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 13 | 9 12 | bitrd | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 0 ↔ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 15 | 14 | anbi2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 0 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) ) |
| 16 | 4 15 | bitrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐴 ) ↔ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ) ) |
| 17 | 3 16 | bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ ( 𝐵 − 𝐴 ) ) ↔ 𝐴 = 0 ) ) |