This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unfolding different forms of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsuccf.1 | |- A e. _V |
|
| brsuccf.2 | |- B e. _V |
||
| Assertion | lemsuccf | |- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsuccf.1 | |- A e. _V |
|
| 2 | brsuccf.2 | |- B e. _V |
|
| 3 | opex | |- <. A , { A } >. e. _V |
|
| 4 | breq1 | |- ( x = <. A , { A } >. -> ( x Cup B <-> <. A , { A } >. Cup B ) ) |
|
| 5 | 3 4 | ceqsexv | |- ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> <. A , { A } >. Cup B ) |
| 6 | snex | |- { A } e. _V |
|
| 7 | 1 6 2 | brcup | |- ( <. A , { A } >. Cup B <-> B = ( A u. { A } ) ) |
| 8 | 5 7 | bitri | |- ( E. x ( x = <. A , { A } >. /\ x Cup B ) <-> B = ( A u. { A } ) ) |
| 9 | 1 | brtxp2 | |- ( A ( _I (x) Singleton ) x <-> E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) ) |
| 10 | 9 | anbi1i | |- ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) |
| 11 | 3anass | |- ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) <-> ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) ) |
|
| 12 | 11 | anbi1i | |- ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) ) |
| 13 | an32 | |- ( ( ( x = <. a , b >. /\ ( A _I a /\ A Singleton b ) ) /\ x Cup B ) <-> ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) ) |
|
| 14 | vex | |- a e. _V |
|
| 15 | 14 | ideq | |- ( A _I a <-> A = a ) |
| 16 | eqcom | |- ( A = a <-> a = A ) |
|
| 17 | 15 16 | bitri | |- ( A _I a <-> a = A ) |
| 18 | vex | |- b e. _V |
|
| 19 | 1 18 | brsingle | |- ( A Singleton b <-> b = { A } ) |
| 20 | 17 19 | anbi12i | |- ( ( A _I a /\ A Singleton b ) <-> ( a = A /\ b = { A } ) ) |
| 21 | 20 | anbi1i | |- ( ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
| 22 | ancom | |- ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( ( A _I a /\ A Singleton b ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
|
| 23 | df-3an | |- ( ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( ( a = A /\ b = { A } ) /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
|
| 24 | 21 22 23 | 3bitr4i | |- ( ( ( x = <. a , b >. /\ x Cup B ) /\ ( A _I a /\ A Singleton b ) ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
| 25 | 12 13 24 | 3bitri | |- ( ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
| 26 | 25 | 2exbii | |- ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) ) |
| 27 | 19.41vv | |- ( E. a E. b ( ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) ) |
|
| 28 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 29 | 28 | eqeq2d | |- ( a = A -> ( x = <. a , b >. <-> x = <. A , b >. ) ) |
| 30 | 29 | anbi1d | |- ( a = A -> ( ( x = <. a , b >. /\ x Cup B ) <-> ( x = <. A , b >. /\ x Cup B ) ) ) |
| 31 | opeq2 | |- ( b = { A } -> <. A , b >. = <. A , { A } >. ) |
|
| 32 | 31 | eqeq2d | |- ( b = { A } -> ( x = <. A , b >. <-> x = <. A , { A } >. ) ) |
| 33 | 32 | anbi1d | |- ( b = { A } -> ( ( x = <. A , b >. /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) ) |
| 34 | 1 6 30 33 | ceqsex2v | |- ( E. a E. b ( a = A /\ b = { A } /\ ( x = <. a , b >. /\ x Cup B ) ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
| 35 | 26 27 34 | 3bitr3i | |- ( ( E. a E. b ( x = <. a , b >. /\ A _I a /\ A Singleton b ) /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
| 36 | 10 35 | bitri | |- ( ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> ( x = <. A , { A } >. /\ x Cup B ) ) |
| 37 | 36 | exbii | |- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> E. x ( x = <. A , { A } >. /\ x Cup B ) ) |
| 38 | df-suc | |- suc A = ( A u. { A } ) |
|
| 39 | 38 | eqeq2i | |- ( B = suc A <-> B = ( A u. { A } ) ) |
| 40 | 8 37 39 | 3bitr4i | |- ( E. x ( A ( _I (x) Singleton ) x /\ x Cup B ) <-> B = suc A ) |