This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | |- B = ( Base ` K ) |
|
| latlej.l | |- .<_ = ( le ` K ) |
||
| latlej.j | |- .\/ = ( join ` K ) |
||
| Assertion | latnlej | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> ( X =/= Y /\ X =/= Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | |- B = ( Base ` K ) |
|
| 2 | latlej.l | |- .<_ = ( le ` K ) |
|
| 3 | latlej.j | |- .\/ = ( join ` K ) |
|
| 4 | 1 2 3 | latlej1 | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> Y .<_ ( Y .\/ Z ) ) |
| 5 | 4 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y .<_ ( Y .\/ Z ) ) |
| 6 | breq1 | |- ( X = Y -> ( X .<_ ( Y .\/ Z ) <-> Y .<_ ( Y .\/ Z ) ) ) |
|
| 7 | 5 6 | syl5ibrcom | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Y -> X .<_ ( Y .\/ Z ) ) ) |
| 8 | 7 | necon3bd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> X =/= Y ) ) |
| 9 | 1 2 3 | latlej2 | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> Z .<_ ( Y .\/ Z ) ) |
| 10 | 9 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z .<_ ( Y .\/ Z ) ) |
| 11 | breq1 | |- ( X = Z -> ( X .<_ ( Y .\/ Z ) <-> Z .<_ ( Y .\/ Z ) ) ) |
|
| 12 | 10 11 | syl5ibrcom | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Z -> X .<_ ( Y .\/ Z ) ) ) |
| 13 | 12 | necon3bd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> X =/= Z ) ) |
| 14 | 8 13 | jcad | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( -. X .<_ ( Y .\/ Z ) -> ( X =/= Y /\ X =/= Z ) ) ) |
| 15 | 14 | 3impia | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ -. X .<_ ( Y .\/ Z ) ) -> ( X =/= Y /\ X =/= Z ) ) |